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Monte Carlo simulation of an Ising antiferromagnet with competing Glauber
and Kawasaki dynamics

B. C. S. Grandi and W. Figueiredo
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, Santa Catarina, Brazil

~Received 16 June 1997!

In this work we consider a two-dimensional antiferromagnetic Ising model in contact with a heat bath at
temperatureT, and subject to an external source of energy. The dynamics of this model is governed by the
competition between two stochastic processes: the Glauber dynamics with probabilityp, which simulates the
contact with the heat bath, and the Kawasaki one with probability 12p, which takes into account the flux of
energy into the system. By employing Monte Carlo simulations, we have found the phase diagram for the
stationary states of the system, as well as the corresponding critical exponents. The phase diagram is very
similar to the one obtained through dynamical pair approximation. Conversely to the ferromagnetic case, this
Ising antiferromagnet does not exhibit the phenomenon of self-organization.@S1063-651X~97!05011-3#

PACS number~s!: 64.60.Ht
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I. INTRODUCTION

In a previous paper@1# we found a stationary phase dia
gram of the two-dimensional Ising antiferromagnet when
system is subject to two independent competing stocha
dynamics: the one-spin-flip Glauber dynamics@2#, with
probability p, and the two-spin-exchange Kawasaki dyna
ics @3#, with probability 12p. The role of these two dynam
ics concerning the symmetries of the system is quite dif
ent: the Glauber kinetics always changes the or
parameter, while the Kawasaki one conserves the ferrom
netic order parameter but not the antiferromagnetic order
rameter. We can think about this system as being couple
a heat bath at a given temperature, and subject to an ext
flux of energy. The contact with the heat reservoir can
simulated by the Glauber process, while the input of ene
into the system can be associated with the Kawasaki proc
By employing the dynamical pair approximation, we show
that this system exhibits only the antiferromagnetic and
paramagnetic stationary states. For values ofp<0.968, this
competing Ising antiferromagnet presents only the param
netic phase. That is, the antiferromagnetic state is easily
stroyed by a very small flux of energy into the system. Th
the phase diagram of this model in the plane tempera
versus probabilityp shows a continuous transition line
which separates the stationary antiferromagnetic and p
magnetic phases.

The behavior of the ferromagnetic version of this comp
ing model was studied by Tome´ and de Oliveira@4# in the
dynamical pair approximation. They showed that this syst
exhibits the interesting phenomenon of self-organization:
system goes continuously from a ferromagnetic to a pa
magnetic state as we increase the flux of energy into
system. By increasing this flux more and more, it is poss
to pass from the disordered paramagnetic to an ordered
tiferromagnetic phase. On the other hand, Grandi
Figueiredo@5# have performed Monte Carlo simulations f
this model in a square lattice. The phase diagram obta
from simulations is completely different from the one det
mined by the dynamical pair approximation: although it a
561063-651X/97/56~5!/5240~5!/$10.00
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pears a very small antiferromagnetic region in the phase
gram, that is, only for p<0.073, and, at very high
temperatures, we note that, at very small temperatures,
only stable phase is the ferromagnetic one, and the phen
enon of self-organization disappears in the limit of zero te
perature.

In this work we study the antiferromagnetic Ising mod
in two dimensions with competing Glauber and Kawas
kinetics, as described above. We employ extensive Mo
Carlo simulations and finite-size analysis in order to find
phase diagram and the critical exponents of the model.
the results of simulations in the ferromagnetic case chan
significantly the picture of self-organization, we wonder
similar simulations performed in the antiferromagnetic v
sion of the model could furnish a different diagram from th
found in the dynamical pair approximation analysis.

II. DYNAMICS OF THE MODEL

Here we consider an antiferromagnetic Ising model o
square lattice withN lattice sites. The state of the system
represented bys5(s1 ,s2 ,...,sN), where the spin variable
assumes the valuess i561. The energy of the system in th
states is given by

E~s!5J(
~ i , j !

s is j , ~1!

where the summation is only over nearest-neighboring sp
and J.0. Let P(s,t) be the probability of finding the sys
tem in the states at timet. The evolution ofP(s,t) is given
by the following master equation:

dP~s,t !

dt
5(

s8
@P~s8,t !W~s8,s!2P~s,t !W~s,s8!#,

~2!

whereW(s8,s) gives the probability, per unit time, for th
transition from the states8 to states. We assume that the
two competing processes can be written as

W~s8,s!5pWG~s8,s!1~12p!WK~s8,s!, ~3!
5240 © 1997 The American Physical Society



s

r
h

st

a

o

a

n
nt
n

s.
ar

e

a
m

ra
r

e

e

the
the
-
ear
ced

te-
ary

l

eti-

t

on

t
d
val-
ing

-

nt

the
in

56 5241MONTE CARLO SIMULATION OF AN ISING . . .
where

WG~s8,s!5(
i 51

N

ds
18 ,s1

ds
28 ,s2

•••ds
i8 ,2s i

•••ds
N8 ,sN

wi~s!

~4!

and

WK~s8,s!5(
~ i , j !

ds
18 ,s1

ds
28 ,s2

•••ds
i8 ,s j

•••ds
j8 ,s i

•••ds
N8 ,sN

3wi j ~s!, ~5!

where in the above summation only pairs of neare
neighbors spins are considered.

In these equations,WG(s8,s) is the one-spin flip Glaube
process, which simulates the contact with the heat bat
temperatureT, and WK(s8,s) is the two-spin flip, which
simulates the flux of energy into the system. Also,wi(s) is
the transition probability of flipping spini , while wi j (s) is
the transition probability of exchanging two neare
neighbors spinsi and j .

The contact with the heat bath at temperatureT is given
by the following prescription:

wi~s!5minF1,expS 2
DEi

kBTD G , ~6!

whereDEi is the change in energy when spini is flipped.
On the other hand, for the two-spin-exchange Kawas

dynamics, we take the following expression forwi j (s):

wi j ~s!5 H0
1

for DEi j <0
for DEi j .0, ~7!

whereDEi j is the energy after the exchange of the neighb
ing spinsi and j minus the energy before the exchange.

III. MONTE CARLO SIMULATIONS

We have considered Monte Carlo simulations on a squ
lattice with L3L5N sites, with the values ofL ranging
from L54 up to 64. We have taken periodic boundary co
ditions in all of our simulations. We considered differe
initial conditions in order to guarantee that the final statio
ary states we use in our calculations are the correct one

We follow the steps described below to find the station
states of the system as a function ofp and T: for selected
values of the probabilityp and temperatureT, we choose at
random a spini , from a given initial configuration. Then w
generate a random numberj1 between zero and unity. Ifj1
<p, we choose to perform the Glauber process; in this c
we calculate the value ofwi(s) and generate another rando
numberj2 . If j2<wi(s), we flip spini , otherwise do not. If
j1.p we go over the Kawasaki process. We again gene
another random numberj3 in order to select one of the fou
nearest-neighbors of the spini , sayj . Then we find the value
of wi j and we exchange the selected spins only ifwi j 51. We
have discarded the first 104N Monte Carlo steps in order to
attain the stationary regime, for all lattice sizes we consid
One Monte Carlo step equalsN single-spin flips or an ex-
change of spins trials. In order to estimate the quantities
interest, we used 53104 Monte Carlo steps to calculate th
averages for any lattice size.
t-

at

-

ki

r-

re

-

-

y

se

te

r.

of

We can evaluate the stationary phase diagram of
model and its associated critical exponents by using
finite-size scaling concepts@6# applied to some thermody
namic properties of the system. For a system with lin
dimensionL, we define, at the stationary states, the redu
staggered magnetizationML , susceptibility xL , and the
fourth-order cumulant@7# UL by the following expressions:

ML5^umu&, ~8!

xL5N$^m2&2^umu&2%, ~9!

UL512
^m4&

3^m2&2 , ~10!

wherem5(1/N)( i 51
N s i .

These above defined quantities obey the following fini
size scaling relations in the neighborhood of the station
critical point Tc :

ML~T!5L2b/nM0~L1/ne!, ~11!

xL~T!5Lg/nx0~L1/ne!, ~12!

UL~T!5U0~L1/ne!, ~13!

wheree5T2Tc .
If we derive Eq.~13! with respect to the temperatureT,

we obtain the scaling relation

UL8~T!5L1/nU08~L1/ne!, ~14!

so thatUL8(Tc)5L1/nU08(0). Then we can find the critica
exponentn from the log-log plot ofUL8(Tc) versusL.

IV. PHASE DIAGRAM AND CRITICAL EXPONENTS

The critical temperature for every value ofp can be de-
termined approximately by a plot of the staggered magn
zation ML as a function of 1/L for different values of tem-
peratureT. For instance, in Fig. 1 we exhibit this kind of plo
for the selected valuep50.99 and for values ofT in the
range 1.6<T<2.2: it is easy to see that the magnetizati
changes abruptly between the valuesT51.9 and 2.0, in units
of J/kB . For values ofT<1.9 the magnetization is almos
constant for all values ofL, which characterizes an ordere
stationary antiferromagnetic state. On the other hand, for
ues ofT>2.0, the staggered magnetization, while remain
finite for any value ofL, decreases as 1/L for each value of
T.

In order to locate better the critical temperatureTc of the
model, in Fig. 2 we plot, forp50.99, the reduced fourth
order cumulantUL(T), defined by Eq.~10!, as a function of
temperatureT, for several values ofL as indicated in the
figure. The scaling relation for the fourth-order cumula
shows that, at the critical temperature, all curves ofUL(T)
must intercept themselves atTc for whatever value ofL.
From the latter figure we estimate the value ofTc as being
1.9260.01. We considered other values ofp in our analysis
in order to determine the complete phase diagram of
model. In Fig. 3 we exhibit the phase diagram we obtain
the planeh5exp(2J/kBT) versus 12p. As we can see, the
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5242 56B. C. S. GRANDI AND W. FIGUEIREDO
antiferromagnetic phase occupies a very small region of
phase diagram. As 12p gives the probability of occurrence
of Kawasaki dynamics, then the nonequilibrium antiferr
magnetic states are destroyed by a small flux of energy i
the system. AtT50, the critical value ofp is 0.965; surpris-
ingly, the value we determined in our simulations is the sa
as we have found in the dynamical pair approximation@1#,
that is,pc50.968. Again, we have shown that this competin
antiferromagnetic Ising model does not present the s
organization phenomenon. As opposed to the ferromagn
case, where results from the dynamical pair approximat

FIG. 1. Staggered magnetizationML as a function of 1/L for
several values ofT and p50.99. The transition appears for 1.
<T<2.0.

FIG. 2. Reduced fourth-order cumulantUL(T) as a function of
temperatureT for several values of the lattice sizeL andp50.99.
The broken lines serve as a guide to the eyes. The critical temp
ture isTc51.9260.01.
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and Monte Carlo simulations were quite different, here,
the corresponding antiferromagnetic model, both calcu
tions gave very closely results concerning the phase diagr

From our Monte Carlo simulations, we can also evalu
the critical exponents of the model. From Eq.~14! we see
that, at the critical temperatureTc , UL8(Tc) scales asL1/n.
Then, from the log-log plot ofUL8(Tc) versusL, as can be
seen in Fig. 4, forp50.99, the best fit to the Monte Carl
data gives usn51.0060.04.

In Fig. 5 we exhibit the log-log plot of the staggere
magnetization, at the critical temperatureTc ,ML(Tc) versus
L, for p50.99. From the slope of the straight line, which

FIG. 4. Log-log plot ofUL8(Tc) vs L for p50.99. The straight
line is the best fit to the data, which givesn51.0060.04.

ra-

FIG. 3. Phase diagram of the two-dimensional competing a
ferromagnetic Ising model.h5exp(2J/kBT) and 12p is related to
the flux of energy.AF and P refer to antiferromagnetic and para
magnetic phases, respectively.
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56 5243MONTE CARLO SIMULATION OF AN ISING . . .
the best fit to the data points, and using Eq.~11!, we can
obtain the value of the stationary critical ratiob/n. Then, our
estimate isb/n50.1160.01.

Another stationary critical exponent of interest is that a
sociated with the susceptibility. We can find the value of th
ratio g/n by employing two different approaches based o
the scale relation given by Eq.~12!. In the first case we can
construct a log-log plot ofxL(T) versusL, at the stationary
critical temperatureTc ; then, from the slope of the straigh
line, which is the best fit to the data points, we can obta
for p50.99, the valueg/n51.7260.02, as can be seen in

FIG. 5. Log-log plot of the magnetizationML(Tc) vs L for p
50.99. From the slope of the straight line, which is the best fit
the data points, we obtainb/n50.1160.01.

FIG. 6. Log-log plots of the susceptibilityxL(T) vs L. Open
circles meanxL(T) at T5Tc , and solid circles meanxL(T) at its
maximum. The straight lines are the best fits to the data poin
From these slopes we obtain open circles,g/n51.7260.02, and
solid circles,g/n51.7460.01.
-
e

,

Fig. 6. We can also estimate the same ratio by a log-log
of the maximum value of the susceptibility versusL. It is
easy to see that ifTL

max is the value ofT for which xL(T) is
maximum, thenTL

max5Tc1(umax/L1/n), whereumax is a con-
stant independent ofL which maximizesx0(u). Based on
these arguments, we immediately see that the maximum
the susceptibility also scales asLg/n. In this way, from Fig.
6, the value we obtain for this ratio isg/n51.7460.01, at
p50.99. As to be expected, the value ofTL

max goes to the
value ofTc whenL becomes very large. Therefore, in Fig.

s.

FIG. 7. Behavior ofTL
max, the value ofT at which the suscepti-

bility is maximum, vs 1/L. The extrapolated value asL→` is
Tmax51.95.

FIG. 8. Critical exponentn as a function of 12p at the critical
line represented in Fig. 3. The error bars give the accuracy of
Monte Carlo data points. The estimated values ofn are around the
corresponding exact equilibrium valuen51.
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5244 56B. C. S. GRANDI AND W. FIGUEIREDO
we show the plot ofTL
max as a function of the inverse o

lattice size. From the extrapolation of the straight line, wh
is the best fit to the data, we find thatTc51.9560.03.

In Figs. ~8–10! we exhibit the plots we obtained forn,
b/n, andg/n, respectively, for other values of the compe
tion parameter at the stationary critical line of the phase d
gram of Fig. 3. We would like to stress that the values
have obtained for these critical exponents compare very
with the analogous static exponents of the correspond
two-dimensional equilibrium Ising model. As our nonequ
librium model preserves the up-down symmetry, it is e
pected that it belongs to the same universality class of
equilibrium Ising model@8,9#. In a recent review, Schmitt
mann and Zia@10# discussed general arguments about u
versality classes on driven diffusive systems which evolve
nonequilibrium steady states.

V. CONCLUSION

We have determined the phase diagram and studied
stationary critical properties of a nonequilibrium antiferr

FIG. 9. Ratio b/n as a function of 12p at the critical line
transition. The estimated values of this ratio oscillate around
exact equilibrium value1
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magnetic Ising model in a square lattice, where the system
in contact with a heat bath at temperatureT, and subject to
an external flux of energy. The exchange of energy with
heat reservoir is assumed to be represented by the stoch
Glauber process, while the flux of energy into the system
simulated by a kind of Kawasaki diffusive process. T
phase diagram of the model we have obtained through Mo
Carlo simulations is quite similar to that found in the d
namical pair approximation, and confirms that this mod
does not exhibit the self-organization phenomenon. We h
also calculated the critical exponents associated to
model, and we have found that its values are in accorda
with those of the corresponding equilibrium Ising model
two dimensions.
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FIG. 10. Ratiog/n as a function of 12p at the transition line

between antiferromagnetic and paramagnetic stationary pha
Within the accuracy of our data points, the values of this ra
oscillate around the exact equilibrium value7
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