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Monte Carlo simulation of an Ising antiferromagnet with competing Glauber
and Kawasaki dynamics
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In this work we consider a two-dimensional antiferromagnetic Ising model in contact with a heat bath at
temperaturel, and subject to an external source of energy. The dynamics of this model is governed by the
competition between two stochastic processes: the Glauber dynamics with prolgabilibich simulates the
contact with the heat bath, and the Kawasaki one with probabilityp 1which takes into account the flux of
energy into the system. By employing Monte Carlo simulations, we have found the phase diagram for the
stationary states of the system, as well as the corresponding critical exponents. The phase diagram is very
similar to the one obtained through dynamical pair approximation. Conversely to the ferromagnetic case, this
Ising antiferromagnet does not exhibit the phenomenon of self-organizf8&A63-651X97)05011-3

PACS numbd(s): 64.60.Ht

[. INTRODUCTION pears a very small antiferromagnetic region in the phase dia-
. : . gram, that is, only forp=<0.073, and, at very high

In a previous p.apem we fom_md a §tat|onary phase dia- temperatures, we note that, at very small temperatures, the
gram of the two-dimensional Ising antiferromagnet when theOnly stable phase is the ferromagnetic one, and the phenom-

system is subject to two independent competing stochastic oy, of self-organization disappears in the limit of zero tem-
dynamics: the one-spin-flip Glauber dynamif2], with perature.

probability p, and the two-spin-exchange Kawasaki dynam- | this work we study the antiferromagnetic Ising model
ics [3], with probability 1—p. The role of these two dynam- in two dimensions with competing Glauber and Kawasaki
ics concerning the symmetries of the system is quite differkinetics, as described above. We employ extensive Monte
ent. the Glauber kinetics always changes the ordeCarlo simulations and finite-size analysis in order to find the
parameter, while the Kawasaki one conserves the ferromaghase diagram and the critical exponents of the model. As
netic order parameter but not the antiferromagnetic order pahe results of simulations in the ferromagnetic case changed
rameter. We can think about this system as being coupled teignificantly the picture of self-organization, we wonder if
a heat bath at a given temperature, and subject to an exterrgimilar simulations performed in the antiferromagnetic ver-
flux of energy. The contact with the heat reservoir can besion of the model could furnish a different diagram from that
simulated by the Glauber process, while the input of energjound in the dynamical pair approximation analysis.

into the system can be associated with the Kawasaki process.

By employing the dynamical pair approximation, we showed II. DYNAMICS OF THE MODEL

that this system exhibits only the antiferromagnetic and the

paramagnetic stationary states. For valuepsf0.968, this Here we consider an antiferromagnetic Ising model on a

competing Ising antiferromagnet presents only the paramag:d4are lattice withN lattice sites. The state of the system is
epresented by =(o,,05,...,0n), Where the spin variable

netic phase. That is, the antiferromagnetic state is easily d th lues— +1. Th f1h tem in th
stroyed by a very small flux of energy into the system. ThergSSUMes e valueg == 1. The energy ot the system in the

the phase diagram of this model in the plane temperaturgtatea is given by
versus probabilityp shows a continuous transition line, E _JE 1
which separates the stationary antiferromagnetic and para- (0)= &) 7 (1)
magnetic phases. here th tion i | t-neiahbori .

The behavior of the ferromagnetic version of this compet—W ere the summation 1S only over nearest-neignboring spins
. : . - : andJ>0. Let P(o,t) be the probability of finding the sys-
ing model was studied by Tomand de Oliveird4] in the ) ! . )

: : o7 . tem in the stater at timet. The evolution ofP(o,t) is given

dynamical pair approximation. They showed that this systenﬂ) . o

o . . o y the following master equation:
exhibits the interesting phenomenon of self-organization: the
system goes continuously from a ferromagnetic to a para- dp(g,t)
magnetic state as we increase the flux of energy into the TIZ [P(o" ,)W(o',0)=P(a,t)W(a,0")],
system. By increasing this flux more and more, it is possible v %)
to pass from the disordered paramagnetic to an ordered an-
tiferromagnetic phase. On the other hand, Grandi anavhereW(o',o) gives the probability, per unit time, for the
Figueiredo[5] have performed Monte Carlo simulations for transition from the state’ to states. We assume that the
this model in a square lattice. The phase diagram obtainetivo competing processes can be written as
from simulations is completely different from the one deter-
mined by the dynamical pair approximation: although it ap- W(o',0)=pWg(o',0)+(1—p)Wk(o',0), (€]
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where We can evaluate the stationary phase diagram of the
N model and its associated critical exponents by using the
WG(U’,O‘)=E Syl 58yt o Byt g Byt o Wi() finitg—size scal_ing concepi$] applied to some thermody—
i=1 171 T2 i T NON namic properties of the system. For a system with linear
4) dimensionL, we define, at the stationary states, the reduced
and staggered magnetizatioM, susceptibility y, , and the
fourth-order cumulang7] U, by the following expressions:
WK(OJ,O-):(iE,j:) 5(ri ,01505,02' B 50’( ,a'j' B 50'].' ,U'i. o 60',/\‘ ON ML=<|m|>a (8)
Xwij(), (5) xo=N{(m?)—(|m[)?}, 9
where in the above summation only pairs of nearest- (m
neighbors spins are considered. u-=1 (10

: RN I - 3(mA)?
In these equation§Vs(o’, o) is the one-spin flip Glauber

process, which simulates the contact with the heat bath _ N
temperatureT, and Wy(o',o) is the two-spin flip, which Fherem—(1N)3 1Ly
simulates the flux of energy into the system. Alag(o) is
the transition probability of flipping spin, while w;;(o) is
the transition probability of exchanging two nearest-

These above defined quantities obey the following finite-
size scaling relations in the neighborhood of the stationary
critical point T, :

neighbors spins andj. M (T)=L"A"My(LY"e¢), (11)
The contact with the heat bath at temperaflires given
by the following prescription: xU(T)=L""yo(LYe), (12)

w;(o)=min , (6) UL(T)=Ug(LYe), (13)

1 AE;
R kT
- . Lo heree=T—-T..

whereAE; is the change in energy when spitis flipped. w ¢ .

On theI other hand, for the two-spin-exchange F:<awasaki If we _derlve Eq..(13) W'th respect to the temperatuig
dynamics, we take the following expression foy (o): we obtain the scaling relation

[0 for AE;=<0 U (T)=LYU{(LYe), (14)

Wi()=11 for AE;>0 ™

so thatU| (T,)=L"U{(0). Then we can find the critical
whereAE;; is the energy after the exchange of the neighborexponentr from the log-log plot ofu| (T.) versusL.

ing spinsi andj minus the energy before the exchange.

IV. PHASE DIAGRAM AND CRITICAL EXPONENTS

IIl. MONTE CARLO SIMULATIONS .
The critical temperature for every value pfcan be de-

We have considered Monte Carlo simulations on a squartermined approximately by a plot of the staggered magneti-
lattice with LXL=N sites, with the values ol ranging zationM_ as a function of 1/ for different values of tem-
from L=4 up to 64. We have taken periodic boundary con-peratureT. For instance, in Fig. 1 we exhibit this kind of plot
ditions in all of our simulations. We considered different for the selected valup=0.99 and for values of in the
initial conditions in order to guarantee that the final station-range 1.6sT<2.2: it is easy to see that the magnetization
ary states we use in our calculations are the correct ones. changes abruptly between the valdles1.9 and 2.0, in units

We follow the steps described below to find the stationaryof J/kg. For values ofT<1.9 the magnetization is almost
states of the system as a functionpfand T: for selected constant for all values df, which characterizes an ordered
values of the probabilityp and temperaturé&, we choose at stationary antiferromagnetic state. On the other hand, for val-
random a spin, from a given initial configuration. Then we ues ofT=2.0, the staggered magnetization, while remaining
generate a random numbgr between zero and unity. §;  finite for any value ofL, decreases asllifor each value of
=<p, we choose to perform the Glauber process; in this casé.
we calculate the value a¥;(o) and generate another random  In order to locate better the critical temperatdigof the
numberé,. If £&,<w;(o), we flip spini, otherwise do not. If model, in Fig. 2 we plot, fop=0.99, the reduced fourth-
£,>p we go over the Kawasaki process. We again generaterder cumulant), (T), defined by Eq(10), as a function of
another random numbey, in order to select one of the four temperatureT, for several values of as indicated in the
nearest-neighbors of the spinsayj. Then we find the value figure. The scaling relation for the fourth-order cumulant
of w;; and we exchange the selected spins only;ji=1. We  shows that, at the critical temperature, all curvedJe{T)
have discarded the first 49 Monte Carlo steps in order to must intercept themselves @ for whatever value of..
attain the stationary regime, for all lattice sizes we considerfFrom the latter figure we estimate the valueTgfas being
One Monte Carlo step equalé single-spin flips or an ex- 1.92+0.01. We considered other valuesmin our analysis
change of spins trials. In order to estimate the quantities oin order to determine the complete phase diagram of the
interest, we used 810* Monte Carlo steps to calculate the model. In Fig. 3 we exhibit the phase diagram we obtain in
averages for any lattice size. the planen=exp(—J/kgT) versus -p. As we can see, the
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FIG. 1. Staggered magnetizatioh, as a function of 1/ for FIG. 3. Phase diagram of the two-dimensional competing anti-
several values off and p=0.99. The transition appears for 1.9 ferromagnetic Ising modely=exp(—J/kgT) and 1-p is related to
<T=<2.0. the flux of energyAF andP refer to antiferromagnetic and para-

magnetic phases, respectively.

antiferromagnetic phase occupies a very small region of the
phase diagram. As-1p gives the probability of occurrence and Monte Carlo simulations were quite different, here, for
of Kawasaki dynamics, then the nonequilibrium antiferro-the corresponding antiferromagnetic model, both calcula-
magnetic states are destroyed by a small flux of energy int§ons gave very closely results concerning the phase diagram.
the system. AT =0, the critical value op is 0.965; surpris- From our Monte Carlo simulations, we can also evaluate
ingly, the value we determined in our simulations is the saméhe critical exponents of the model. From HG4) we see
as we have found in the dynamical pair approximafith  that, at the critical temperaturg,, U/(T,) scales at.'"”.
that is,p.=0.968. Again, we have shown that this competingThen, from the log-log plot ofJ; (T.) versusL, as can be
antiferromagnetic Ising model does not present the selfseen in Fig. 4, fop=0.99, the best fit to the Monte Carlo
organization phenomenon. As opposed to the ferromagnetidata gives usg'=1.00+0.04.
case, where results from the dynamical pair approximation In Fig. 5 we exhibit the log-log plot of the staggered
magnetization, at the critical temperatdrg,M (T,.) versus
L, for p=0.99. From the slope of the straight line, which is
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FIG. 2. Reduced fourth-order cumuladi (T) as a function of InL

temperaturel for several values of the lattice siteandp=0.99.
The broken lines serve as a guide to the eyes. The critical tempera- FIG. 4. Log-log plot ofU|(T,) vs L for p=0.99. The straight
ture isT,=1.92+0.01. line is the best fit to the data, which gives-1.00+=0.04.
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FIG. 5. Log-log plot of the magnetizatiol (T.) vs L for p FIG. 7. Behavior ofT["®, the value ofT at which the suscepti-
=0.99. From the slope of the straight line, which is the best fit tobility is maximum, vs 1. The extrapolated value ds—o is
the data points, we obtaid/v=0.11+0.01. TMaX=1.95.

the best fit to the data points, and using Etjl), we can Fig. 6. We can also estimate the same ratio by a log-log plot
obtain the value of the stationary critical rafgpv. Then, our  of the maximum value of the susceptibility versus It is
estimate isg/v=0.11+0.01. easy to see that if["®is the value ofT for which x, (T) is
Another stationary critical exponent of interest is that as-maximum, thenT’L“aX:Tch(umaX/Ll’V), whereu™ is a con-
sociated with the Susceptlblllty We can find the value of thestant independent df which maximizeon(u)_ Based on
ratio /v by employing two different approaches based onthese arguments, we immediately see that the maximum of
the scale relation given by E@L2). In the first case we can the susceptibility also scales &&'”. In this way, from Fig.
construct a log-log plot of (T) versusL, at the stationary g the value we obtain for this ratio ig/v=1.74+0.01, at
critical temperaturélc; then, from the slope of the straight -0 .99. As to be expected, the value BF™* goes to the

line, which is the best fit to the data points, we can obtain, g e of T. whenl becomes very large. Therefore, in Fig. 7,
for p=0.99, the valuey/v=1.72+0.02, as can be seen in ¢
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FIG. 6. Log-log plots of the susceptibility, (T) vs L. Open
circles meany, (T) at T=T., and solid circles meag, (T) at its FIG. 8. Critical exponent as a function of +-p at the critical
maximum. The straight lines are the best fits to the data pointdine represented in Fig. 3. The error bars give the accuracy of our
From these slopes we obtain open circlesy=1.72+0.02, and Monte Carlo data points. The estimated values afre around the
solid circles,y/v=1.74+0.01. corresponding exact equilibrium value=1.
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FIG. 9. Ratiog/v as a function of +p at the critical line FIG. 10. Ratioy/v as a function of *p at the transition line
transition. The estimated values of this ratio oscillate around thdetween antiferromagnetic and paramagnetic stationary phases.
exact equilibrium value. Within the accuracy of our data points, the values of this ratio

oscillate around the exact equilibrium valge

we show the plot ofT"™ as a function of the inverse of

lattice size. From the extrapolation of the straight line, whichmagnetic Ising model in a square lattice, where the system is
is the best fit to the data, we find tha{=1.95+0.03. in contact with a heat bath at temperatilreand subject to

In Figs. (8-10 we exhibit the plots we obtained for, g external flux of energy. The exchange of energy with the
plv, and ylv, respectively, for other values of the competi- heat reservoir is assumed to be represented by the stochastic
tion parameter at the stationary critical line of the phase diag|gyper process, while the flux of energy into the system is
gram of Fig. 3. We would_ I_|ke to stress that the values wegjmulated by a kind of Kawasaki diffusive process. The
have obtained for these critical exponents compare very WeBhase diagram of the model we have obtained through Monte
with the analogous static exponents of the correspondingao simulations is quite similar to that found in the dy-
two-dimensional equilibrium Ising model. As our nonequi- namical pair approximation, and confirms that this model
librium model preserves the up-down symmetry, it is €X-qoeg not exhibit the self-organization phenomenon. We have
pected that it belongs to the same universality class of thg|s, calculated the critical exponents associated to this

equilibrium Ising model8,9]. In a recent review, Schmitt- o4e| and we have found that its values are in accordance
mann and Zig 10] discussed general arguments about Uniyyith those of the corresponding equilibrium Ising model in
versality classes on driven diffusive systems which evolve tq, dimensions.

nonequilibrium steady states.
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